
## Novel Synthesis of *gem*-Dichloroaziridines from Imines via the KF/Al<sub>2</sub>O<sub>3</sub>-Promoted Generation of Dichlorocarbene from Chloroform

Masatoshi Mihara,<sup>†</sup> Yoshio Ishino,<sup>\*,†</sup> Satoshi Minakata,<sup>‡</sup> and Mitsuo Komatsu<sup>\*,‡</sup>

Osaka Municipal Technical Research Institute, Morinomiya 1-6-50, Joto-ku, Osaka 536-8553, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

ishino@omtri.city.osaka.jp; komatsu@chem.eng.osaka-u.ac.jp

Received February 21, 2005



 $KF/Al_2O_3$  was found to be an efficient base for the reaction of imines with chloroform in acetonitrile to give *gem*dichloroaziridines **2** in moderate to high yields. The KF/  $Al_2O_3$ -promoted dichloroaziridination can be carried out with simple workup, tolerates a variety of functional groups present in the imines, and proceeds smoothly with a smaller amount of carbene source.

gem-Dichloroaziridines are valuable precursors for the preparation of pharmacologically active compounds such as indolinones,<sup>1</sup> analogues of natural alkaloids such as isoquinolinones<sup>2</sup> and isoquinolines,<sup>3</sup> and nitrogen-containing building blocks such as amidines<sup>4</sup> and aziridinones.<sup>5</sup> As a result, several methods for synthesis of gemdichloroaziridines have been reported.<sup>6</sup> The preparation has been accomplished by the addition of dichlorocarbene, generated from chloroform,<sup>6a,c,e,f</sup> hexachloroacetone,<sup>6b</sup> or ethyl trichloroacetate<sup>6d</sup> with the appropriate bases, to imines. Among these, dichlorocarbene, which is generated from chloroform under phase-transfer-catalyzed conditions, is most frequently used for the synthesis of gemdichloroaziridines because the yields are acceptable, the reaction conditions are mild, and the presence of water is not a critical factor.<sup>6e</sup> However, it presents problems with regard to the use of a large excess of the carbene source and the complexity of the procedures. Consequently, a general, efficient, and simple method for dichloroaziridination of imines is strongly desired.

On the other hand, the use of solid-supported reagents has become popular due to their characteristic properties such as enhanced reactivity and selectivity, a straightforward workup procedure, and milder reaction conditions.<sup>7</sup> For example, KF/Al<sub>2</sub>O<sub>3</sub> is known to be a useful and interesting solid-supported reagent for base-induced organic reactions.<sup>8</sup> We recently reported on the convenient N-formylation of secondary amines using KF/ Al<sub>2</sub>O<sub>3</sub> and chloroform in acetonitrile.<sup>9</sup> As a result, the KF/Al<sub>2</sub>O<sub>3</sub>-promoted generation method of dichlorocarbene has proved to be a powerful tool for the synthesis of N-formamide derivatives from imines. However, since the KF/Al<sub>2</sub>O<sub>3</sub>-promoted methods, one of which requires both phase-transfer catalysts and KF/Al<sub>2</sub>O<sub>3</sub>,<sup>10b</sup> were regarded as being less effective than the phase-transfer-catalyzed method in addition reactions of dichlorocarbene to cyclohexene,<sup>10</sup> it has not been widely applied to other transformations, except in our previous report. Herein, we report on a general and convenient KF/Al<sub>2</sub>O<sub>3</sub>-promoted synthesis of gem-dichloroaziridines 2 from imines 1 and chloroform under mild reaction conditions.

Detailed studies of the reaction of *N*-benzylideneaniline (**1a**) with chloroform leading to 2,2-dichloro-1,3-diphenylaziridine (**2a**) showed that this addition reaction is influenced to a considerable extent, by bases and solvents, as shown in Scheme 1 and Table 1 (method A). The reaction of **1a** with chloroform in the presence of KF or  $Al_2O_3$  (neutral) did not proceed at all (entries 1 and 2), while the use of commercially available KF/Al\_2O\_3 led to the production of the desired *gem*-dichloroaziridine **2a** in high yield. For example, when **1a** (0.5 mmol) was treated with chloroform (1.5 mmol) in the presence of KF/Al\_2O\_3 (2 g) in acetonitrile, **2a** was obtained in 95% yield (entry 3). As a result of an investigation of a suitable solvent for the aziridination, acetonitrile was found to

<sup>&</sup>lt;sup>†</sup>Osaka Municipal Technical Research Institute.

<sup>&</sup>lt;sup>‡</sup> Osaka University.

<sup>(1)</sup> Seno, M.; Shiraishi, S.; Suzuki, Y.; Asahara, T. Bull. Chem. Soc. Jpn. 1978, 51, 1413.

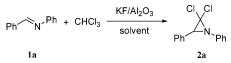
<sup>&</sup>lt;sup>(2)</sup> (2) Petrov, O. S.; Ognyanov, V. I.; Mollov, N. M. Synthesis **1987**, 637.

<sup>(3)</sup> Khlebnikov, A. F.; Nikiforova, T. Yu.; Novikov, M. S.; Kostikov, R. R. Synthesis **1997**, 677.

<sup>(4)</sup> Meilahn, M. K.; Augenstein, L. L.; McManaman, J. L. J. Org. Chem. 1971, 36, 3627.
(5) Ohshiro, Y.; Ohnishi, H.; Komatsu, M. J. Jpn. Oil Chem. Soc.

<sup>(5)</sup> Ohshiro, Y.; Ohnishi, H.; Komatsu, M. J. Jpn. Oil Chem. Soc 1987, 36, 884.

<sup>(6) (</sup>a) Fields, E. K.; Sandri, J. M. Chem. Ind. (London) 1959, 1216.
(b) Kadaba, P. K.; Edwards, J. O. J. Org. Chem. 1960, 25, 1431.
(c) Cook, A. G.; Fields, E. K. J. Org. Chem. 1962, 27, 3686. (d) Brooks, R. E.; Edwards, J. O.; Levey, G.; Smyth, F. Tetrahedron 1966, 22, 1279.
(e) Makosza, M.; Kacprowicz, A. Rocz. Chem. 1974, 48, 2129.
(f) Khlebnikov, A. F.; Novikov, M. S.; Nikiforova, T. Yu.; Kostikov, R. R. Russ. J. Org. Chem. 1999.


<sup>(7) (</sup>a) Posner, G. H. Angew. Chem., Int. Ed. Engl. 1978, 17, 487.
(b) McKillop, A.; Young, D. W. Synthesis 1979, 401. (c) McKillop, A.;
Young, D. W. Synthesis 1979, 481. (d) Kabalka, G. W.; Pagni, R. M. Tetrahedron 1997, 53, 7999. (e) Minakata, S.; Mihara, M.; Sugoh, N.; Komatsu, M. Heterocycles 1998, 47, 133. (f) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2001, 2397. (g) Mihara, M.; Ishino, Y.; Mizupaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2003, 125, 10486. (j) Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004, 69, 6137. (k) Kamata, K.; Kasai, J.; Yamaguchi, K.; Mizuno, N. Org. Lett. 2004, 6, 3577.

<sup>(8) (</sup>a) Yamawaki, J.; Ando, T. Chem. Lett. 1979, 755. (b) Foucaud,
A.; Bram, G.; Loupy, A. In Preparative Chemistry Using Supported Reagents; Laszlo, P., Ed.; Academic: San Diego, 1987; p 317. (c) Blass,
B. E. Tetrahedron 2002, 58, 9301. (d) Kabalka, G. W.; Wang, L.; Pagni,
R. M.; Hair, C. M.; Namboodiri, V. Synthesis 2003, 217. (e) Hamelin,
J.; Saoudi, A.; Benhaoua, H. Synthesis 2003, 2185. (f) Hosseinzadeh,
R.; Tajbakhsh, M.; Mohadjerani, M.; Mehdinejad, H. Synlett 2004,
1517. (g) Basu, B.; Das, P.; Hossain, I. Synlett 2004, 2224.
(9) Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis

<sup>(9)</sup> Minara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. Synthesis 2003, 2317.

<sup>(10) (</sup>a) Yamawaki, J.; Kawate, T.; Ando, T.; Hanafusa T. Bull. Chem. Soc. Jpn. **1983**, 56, 1885. (b) Ting, X.; Liu, C. Youji Huaxue **1988**, 8, 511; Chem. Abstr. **1989**, 111, 133319t.

## SCHEME 1. KF/Al<sub>2</sub>O<sub>3</sub>-Promoted Synthesis of 2a from $1a^a$



 $^{a}$  Method A: without addition of H2O. Method B: with addition of H2O.

TABLE 1. Synthesis of 2a from 1a under the Conditions of Method  $A^a$ 

| entry    | CHCl <sub>3</sub><br>(mmol) | base (g)                  | solvent  | yield of $2a^{b}$ (%) | recovery of $\mathbf{1a}^{b}$ (%) |
|----------|-----------------------------|---------------------------|----------|-----------------------|-----------------------------------|
| 1        | 1.5                         | KF (0.8)                  | MeCN     | 0                     | 100                               |
| $^{2}$   | 1.5                         | $Al_2O_3$ (neutral) (1.2) | MeCN     | 0                     | 74                                |
| 3        | 1.5                         | $KF/Al_2O_3(2)$           | MeCN     | $95 (77)^c$           | 0                                 |
| 4        | 1.5                         | $KF/Al_2O_3(2)$           | DMF      | 81                    | 16                                |
| <b>5</b> | 1.5                         | $KF/Al_2O_3(2)$           | $CHCl_3$ | 32                    | 62                                |
| 6        | 1.5                         | $KF/Al_2O_3(2)$           | hexane   | 17                    | 74                                |
| 7        | 1.5                         | $KF/Al_2O_3(2)$           | DME      | 14                    | 80                                |
| 8        | 1.5                         | $KF/Al_2O_3(2)$           | none     | 22                    | 66                                |
| 9        | 0.75                        | $KF/Al_2O_3(2)$           | MeCN     | 84                    | 11                                |
| 10       | 1.5                         | $KF/Al_2O_3(1)$           | MeCN     | 76                    | 13                                |

<sup>*a*</sup> Method A: the imine is treated with chloroform in the indicated solvent (3 mL) in the presence of KF/Al<sub>2</sub>O<sub>3</sub> without added water. All reactions were performed at room temperature for 1.5 h on a 0.5 mmol scale. <sup>*b*</sup> NMR yields. <sup>*c*</sup> An isolated yield.

TABLE 2. Synthesis of 2a from 1a under the Conditions of Method  $B^a$ 

| entry | CHCl <sub>3</sub> <sup>b</sup><br>(mmol) | H <sub>2</sub> O<br>(mmol) | time<br>(h) | yield of $2a^{c}$ (%) | recovery of $1a^{c}$ (%) |
|-------|------------------------------------------|----------------------------|-------------|-----------------------|--------------------------|
| 1     | 1.5                                      | none                       | 1.5         | 61                    | 28                       |
| 2     | 1.5                                      | 1.5                        | 1.5         | 88                    | 1                        |
| 3     | 1.5                                      | 5.0                        | 1.5         | 55                    | 40                       |
| 4     | 0.75                                     | 1.5                        | 1.5         | 90                    | 8                        |
| 5     | 0.75                                     | 1.5                        | 15.0        | $98 \ (85)^d$         | 1                        |

<sup>*a*</sup> Method B: the imine is treated with chloroform (dried and distilled) in acetonitrile (dried and distilled) in the presence of KF/Al<sub>2</sub>O<sub>3</sub> and water. All reactions were performed in acetonitrile (3 mL) in the presence of KF/Al<sub>2</sub>O<sub>3</sub> (1 g) at room temperature on a 0.5 mmol scale. <sup>*b*</sup> Dried and distilled. <sup>*c*</sup> NMR yields. <sup>*d*</sup> An isolated yield.

be acceptable (entries 3-8). A decrease in the amount of chloroform or KF/Al<sub>2</sub>O<sub>3</sub> to 0.75 mmol or 1 g, respectively, reduced the efficiency of the reaction (entries 9 and 10).

It is well-known that the efficiency of  $KF/Al_2O_3$  as a base is strongly affected by the amount of water present in the  $KF/Al_2O_3$ .<sup>11</sup> The reaction conditions were optimized by the addition of water to an acetonitrile solution of **1a** in the presence of  $KF/Al_2O_3$  (1 g) (Scheme 1, Table 2 method B). As a consequence, the addition of water (1.5 mmol) to  $KF/Al_2O_3$  (1 g) brought about the almost complete consumption of **1a** (entry 1 vs 2). However, the addition of a larger amount of water (5.0 mmol) decreased the rate of conversion (entry 3). Unlike the case of method A, the use of  $KF/Al_2O_3$  (1 g) under the conditions of method B led the near completion of the reaction (Table 1 entry 10 vs Table 2 entry 2). Moreover, the yield of **2a** could be further improved by prolonging the reaction time even when the amount of chloroform was reduced from

## SCHEME 2. KF/Al<sub>2</sub>O<sub>3</sub>-Promoted Dichloroaziridination of Various Imines

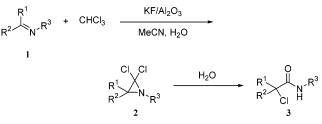



TABLE 3. KF/Al<sub>2</sub>O<sub>3</sub>-Promoted Synthesis of 2 (or 3) from  $1^{a}$ 

|          |    |                |                  |                 | yield (%)      |                |
|----------|----|----------------|------------------|-----------------|----------------|----------------|
| entry    | 1  | $\mathbb{R}^1$ | $\mathbb{R}^2$   | $\mathbb{R}^3$  | 2              | 3              |
| 1        | 1a | Н              | Ph               | Ph              | <b>2a</b> , 85 |                |
| 2        | 1b | Η              | Ph               | 1-naphthyl      | <b>2b</b> , 79 |                |
| 3        | 1c | $\mathbf{Ph}$  | Ph               | benzyl          | <b>2c</b> , 69 |                |
| 4        | 1d | Η              | $4-CO_2MeC_6H_4$ | Ph              | <b>2d</b> , 42 |                |
| <b>5</b> | 1e | Н              | $4-CNC_6H_4$     | Ph              | <b>2e</b> , 49 |                |
| 6        | 1f | Н              | 4-styrylphenyl   | Ph              | <b>2f</b> , 66 |                |
| 7        | 1g | Η              | Ph               | benzyl          | $(2g, 56^b)$   | <b>3g</b> , 47 |
| 8        | 1h | Η              | Ph               | <i>n</i> -octyl | $(2h, 29^b)$   | <b>3h</b> , 29 |
|          |    |                |                  |                 |                |                |

 $^a$  Reaction conditions are described in the Supporting Information.  $^b$  NMR yields.

1.5 to 0.75 mmol (entries 4 and 5). Thus, the addition of water permitted the amount of  $KF/Al_2O_3$  and chloroform used to be decreased. In particular, it should be noted that, although conventional methods for generation of dichlorocarbene require excessive amounts of the carbene source (more than 4 equiv), the amount of chloroform needed could be reduced considerably when the present  $KF/Al_2O_3$ -promoted method was used. In addition, the solid-promoted reaction is very useful in terms of simple and nonaqueous workup, i.e., filtration of the inorganic reagent and evaporation of the solvent.

Several imines 1 were examined for the KF/Al<sub>2</sub>O<sub>3</sub>promoted synthesis of dichloroaziridines 2 under the conditions of method B (Scheme 2). As shown in Table 3, a variety of imines reacted smoothly with chloroform in acetonitrile in the presence of KF/Al<sub>2</sub>O<sub>3</sub> and water to afford the corresponding dichloroaziridines **2** in moderate to high yields (entries 1-8). The reaction of N-benzylideneaniline and N-benzylidenenaphthylamine with chloroform under the conditions of method B gave dichloroaziridines (2a and 2b) in high yields (entries 1 and 2). Treatment of a ketimine such as 1c with chloroform under the same conditions provided 2c in good yield (entry 3). The reaction was shown to tolerate ester, cyano, and styryl functional groups (entries 4-6). The dichloroaziridination of 1g and 1h, derived from unsubstituted benzaldehyde and primary aliphatic amines, was also accomplished (entries 7 and 8). In these cases, N-alkyl- $\alpha$ -chlorophenylacetamides (**3g** and **3h**) were isolated as the ring-opening products of their dichloroaziridines (2g and **2h**). Accordingly, this method offers an efficient route for converting various aldimines and ketimines to the corresponding dichloroaziridines.

Although the mechanistic details still remain ambiguous, the  $KF/Al_2O_3$ -promoted reaction might proceed through addition of in situ generated dichlorocarbene to imines on  $KF/Al_2O_3$ .

In summary,  $KF/Al_2O_3$  was found to be a useful solidsupported base for the generation of dichlorocarbene from

<sup>(11)</sup> Ando, T.; Brown, S. J.; Clark, J. H.; Cork, D. G.; Hanafusa, T.; Ichihara, J.; Miller, J. M.; Robertson, M. S. J. Chem. Soc., Perkin Trans. 2 **1986**, 1133.

chloroform in the synthesis of *gem*-dichloroaziridines. The present  $KF/Al_2O_3$ -promoted dichloroaziridination, which uses reasonable amounts of chloroform, may be characterized by wide generality, simple procedures, good yields, and mild reaction conditions.

## **Experimental Section**

Typical Procedure of Method B: 2,2-Dichloro-1,3-diphenylaziridine (2a). To a suspension of KF/Al<sub>2</sub>O<sub>3</sub> (1 g) and 1a (90.6 mg, 0.5 mmol) in distilled acetonitrile (3.0 mL) was added water (27.0  $\mu$ L, 1.5 mmol), and distilled chloroform (60.0  $\mu$ L, 0.75 mmol) was then added slowly under an Ar atmosphere. The reaction mixture was stirred for 15 h at room temperature. The KF/Al<sub>2</sub>O<sub>3</sub> was removed by filtration and washed with ether. The combined filtrate was evaporated and purified by recrystallization from hexane to give **2a** (112.2 mg, 85%).

**Supporting Information Available:** Experimental procedures, reaction conditions for dichloroaziridination of **1** in Table 3, and characterization data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050321Z